• Chemical Industry M&A 2019

    3. April 2019
    chemical-factory-1227683

    The world is ever changing, and nowhere more so than in the chemicals industry. Technological developments, new products and processes, new regulations, and even new companies, the chemical industry of the future will be a very different place.

    As SAP CEO Bill McDermott, noted at the recent SAPPHIRE NOW conference, “the pace of change has never been faster – and it will never be this slow again.”

    A big influence on the changing face of the chemical industry is the sphere of mergers and acquisitions. Where once stood ICI, Allied Chemical, AkzoNobel, and AGFA, now stand Corteva, Nouryon, and Covestro.

    With these changes influencing chemical company strategy, much time and energy is spent by experts predicting future mergers and acquisitions. Given that every year the value of chemical industry mergers is more than $200 billion then it is time and energy well spent.

    So, what do chemical industry analysts foresee for 2019?

    Deloitte’s 2019 Global Chemical Industry Mergers and Acquisitions Outlook, observes that there were lower trading volumes, “… by private equity investors in 2017 compared with the 2015-2016 period. While this volume continued to decline in 2018, the value of these transactions increased significantly due to the Nouryon deal [when the Carlyle Group and GIC bought out AkzoNobel].” As a result, Delloitte predicts that, “private equity will continue to play a role in the M&A market in 2019. If valuations remain high, private equity will continue to team with other bidders, perform roll-ups, or make bolt-on acquisitions.”

    This outcome is a point highlighted by chemical industry consultants at EY, who state in their report of Dec 2018, that “The growing sway of private capital is creating new possibilities for deals. Activists and private equity (PE) groups have raised record amounts of dry powder, which means greater competition for outright acquisitions. As a result, we expect to see more innovative financing partnerships between private investment groups and businesses in the year ahead, especially around divestitures. It also will mean more large deals. 2018 has seen the most deals in the US$5 billion and US$10 billion range on record. As the market corrects and PE firms seek to deploy their capital, we anticipate seeing this trend continue.

    The belief in this trend is based on the research they conducted, which found that 74% of American executives see the US M&A market improving. Additionally, 51% of executives expect to pursue acquisitions over the next year.

    This expectant surge of activity is perhaps in part to offset the slightly quieter 2018 which many chemical industry sectors experienced.

    One such slower sector in 2018, was in agrichemicals, where Deloitte reports that, “M&A activity in the sector was driven largely by portfolio reshuffling as a result of the mega-deals of previous years. This meant smaller, more precise moves, such as product line divestitures.” Adding that, “Trade disputes, particularly between the US and China, have had a negative impact on agricultural commodity prices.”

    This leaves Deloitte to predict that, “With these challenges facing the sector, M&A activity in 2019 will likely continue to target smaller, more focused portfolio rebalancing. Mega-deals of the size we saw in 2015 and 2016 are unlikely. Activity in 2019 and beyond may skew toward fertilizers rather than agricultural chemicals, where significant rebalancing and consolidation is approaching the endgame.”

    Similarly, slow activity was seen in the commodity chemical segment, where, “As measured by volume, deal activity … dropped 10 percent in 2018 from 2017, when volumes had reached their highest level since 2010.”

    This has been blamed on the Chinese government’s new restrictions on outbound capital as well as the general slowing down of the Chinese economy.

    Another area experiencing a period of reduced deals was the sector for intermediates and specialty chemicals, where, “M&A deal volumes … declined for the second year in a row.” That said, “Despite the decrease in deal volumes, deal value in the sector increased to levels not seen since 2014. This, thanks in part, to five transactions exceeding US$1 billion in value, including Carlyle Group and GIC’s US$12.5-billion acquisition of AkzoNobel’s specialty chemicals business, Nouryon, and IFF’s US$7.1 billion acquisition of Frutarom Industries.”

    2018 was also a quiet year in the industrial gas sector, with the exception of the two large deals that emerged from the Praxair/Linde merger.

    In general, despite the reduced activity in a number of sectors in 2018, and economic uncertainty on a global level (trade tensions, Brexit, slower Chinese economy, rising interest rates), Deloitte still predicts that 2019 will see a, “… robust market for M&A in the global chemical industry.” Particularly as, “The past demonstrates that M&A in the chemical industry can flourish, even in uncertain times.”

    These are sentiments supported by consultants at NetatWork, who in their assessment of the 2019 Trends in the Chemical Industry, state that “Merger and acquisition activity in the U.S. is growing rapidly. With companies spending more as they see increased cash levels, M&A is still the primary focus of those funds. Moreover, this is expected to continue.”

    The consultants at EY concur, although with caution, asserting that, “We expect a robust mergers and acquisitions environment in 2019, but remain cognizant of increased global tension. From the rise of tariffs and protectionism to evolving international alliances, the shifting geopolitical chessboard is affecting how US companies define their strategic priorities, both near and long term.”

    But while mergers and acquisitions have for so long been the catalyst of change in the chemical industry. Maybe this too will change in the coming years. Digitalization, globalization, and technology breakthroughs such a nanotech, are changing the world order, and this may well result in an end to the ‘economies of scale’ thinking of bigger is better, instead flexibility may become key.

    As strategic consultants at PWC note, “The chemical industry may finally be approaching a tipping point, prodded by accelerating technology advances, which are shaping customer purchases and needs, some chemicals companies have begun to rethink their growth strategies, finally moving away from cost-cutting and retrenchment, toward more nimble, coherent, and aggressive business models.”

    All change, please, all change.


     

    Photo credit: Deloitte, Imaa, M&ACritique, Wbscd, SPOTCHEMI, FiberMarine, & Corporateeurope

    Continue Reading
  • The Skills Gap in the American and Chinese Chemical Industries

    29. March 2019
    industry-3068200_1920

    The skills gap is growing, as the latest figures for manufacturing jobs show that there is plenty of work but not enough trained workers. With the chemicals industry growing faster than other manufacturing sectors the lack of a skilled workforce will hit chemical production harder than others.

    There has been a lot of talk about how changes in production will hurt employment levels. But while many fear that Industry 4.0, with its increased use of robotics, advanced computing, AI, and the Internet of Things will cause major job losses, history tells us otherwise. For throughout the previous revolutions (19th century England, Henry Ford production line, & Japanese automation), whenever industrialisation has advanced more jobs have been created than lost, despite the scaremongering Luddites.

    Instead, the problem lies in a lack of trained workers in the job market. An issue highlighted in the latest Skills Gap in Manufacturing report, published by Deloitte, which states that, “the skills gap may leave an estimated 2.4 million positions unfilled between 2018 and 2028, with a potential economic impact of $2.5 trillion. Further, the study shows that the positions relating to digital talent, skilled production, and operational managers may be three times as difficult to fill in the next three years.”

    There are three main challenges facing chemical industry employers.

    1. Lack of Interest in Manufacturing

    An earlier 2015 report (also by industry consultants at Deloitte in cooperation with the Manufacturing Institute) found that interest in a career in manufacturing among school leavers was lower than ever before.

    In the study, respondents aged 19 to 33 gave their opinions on work in the manufacturing sector where many stated they thought employment there would be dirty, inflexible, and dangerous. As a result, millennials prefer the idea of working in industries, such as technology, healthcare, and finance.

    1. Lack of Manufacturing Skills

    With fewer young people interested in a career in manufacturing, the skills needed to work in this sector are becoming less and less sought after. As a result, there is a trend away from STEM (science, technology, engineering, mathematics) subjects that is making it increasingly difficult for employers in the chemical industry to find suitably qualified employees.

    Furthermore, the chemical market’s rapid increase in demand for specialty chemicals means that raw material production is likely to get more technical, as production plants become ever larger and more complex.

    1. Skilled Baby Boomers Retiring

    Further adding to the skills gap challenge in the chemical industry is the rate of retiring chemical workers, each removing his skills and experience from the talent pool. For as the popularity of work in the manufacturing sector has waned over the past few decades, the chemical industry has been left with an aging population.

    As a recent report by Digitalist Magazine, notes, “The average age of the chemical employee currently sits around 45.3 years old – older than all other industries except agriculture, transportation and utilities, and public administration. The industry is currently grappling with knowledge loss as sizeable portions of this population begin to retire in the coming few years.

    While there is little evidence of this skilled workforce being replaced at a sufficient rate by younger generations. For example, while DataUSA (an American research body co-funded by Deloitte) notes that there is slight growth in the number of chemistry graduates (up 0.45% in 2016 to 21,821), a large number of these students are from overseas. As a report by the National Foundation for American Policy states, “International students make up the large majority of full-time students in many graduate science- and engineering-related programs, and their numbers have been rising much faster than the number of domestic students.”

    Most notably, 57% of full-time chemistry courses in the USA were filled by international students.

    America is not alone in its skills gap, as the fall in demand for chemistry as a study topic is a growing trend throughout the West. For example, in the UK, the Royal Society of Chemistry reports that, “In 2017, 26,945 students applied to university to study chemistry, … down 8.5 per cent on 2016 and down 13.4 per cent on 2015.” At the same time, the number of applicants accepted on chemistry courses also fell, “… down 4.9 per cent on 2016 and down 9 per cent on 2015.”

    As a result, many universities are closing their chemistry departments completely. Laboratory equipment and chemical supplies are expensive and can be seen as an expendable overhead for a dwindling number of students. Conversely, humanities can be taught online, while maintaining a mathematics department only requires a piece of chalk.

    But a falling interest in chemistry is not a global phenomenon.

    According to a report on Chemical Education in China by the Chinese Department of Higher Education in cooperation with Beijing’s Curriculum and Teaching Materials Research Institute, the education system has been increasing its focus on chemistry since the 1980s.

    While similar to many western education systems, in that Chinese school children have the option to stop studying chemistry around age 13, there is still plenty of interest in the subject.

    As the report states, “There are at present about one hundred thousand ordinary secondary schools in China with 60 million students and near two hundred thousand chemistry teachers. Among the 1054 universities and colleges more than 300 have set up chemistry [as a] speciality.”

    Adding that, of the 2 million students in adult higher education, “… one eighth of them learn chemistry courses. [Plus] Chinese Radio and TV University and Satellite TV Education offer chemistry lessons every week.”

    Given the exceptional growth of Chinese chemical production and its predicted expansion, it seems that the West could learn a lot from China’s efforts to avoid a skills gap. Despite the trend for western chemical companies to set up production in the Far East, China is increasingly taking its domestic chemical requirements into its own hands. While chemical industry research, both academic and commercial, is increasingly being led by Chinese chemists.

    In fact, while chemical industry chiefs are right to worry about a skills gap in the chemical industry, it is perhaps only a regional problem.

     


    This website is supported by SPOTCHEMI, an online community of chemical industry professionals. Through the company’s website, raw material manufacturers, suppliers, and traders keep up to date on news, price fluctuations, and market trends. The website also offers a product sourcing serviceproduct promotion tool, and provides a general platform for networking among like-minded chemical professionals.

    chemical industry trends


    Photo credit: CardiffUniversity, Digitalist Magazine, StraitsTimes, History & Manufacturingstories

    Continue Reading
  • The Digitalization of the Chemical Industry Made Simple

    20. March 2019
    digital-dream-2-1456675

    Much has already been said and written about the digitalization of the chemicals industry. Even previous blog articles on this website have discussed the power of artificial intelligence, cloud computing, advanced digital algorithms, and quantum computing.

    But what exactly is digitalization? How does it work? And in what way will it transform?

    What is the Digitalization of the Chemical Industry?

    Computers are playing an increasingly large role in our lives. How we interact with family and friends, how we shop, how we work, and even how we find love. But how do you digitalize an industry?

    According to Dr Frank Jenner, a global chemical industry consultant at EY, much of it has already happened. All chemical companies have begun digitalization. Using computers to support or run processes, streamlining productivity, and improving efficiency. In the same way that cars are constructed by robots on a production line or supermarket stock levels and ordering systems are regulated by digital processes, so too has most chemical production been computerised. Production, supply chains, and plant maintenance are invariably all controlled or assisted by micro-chip.

    But now the final part of digitalization is taking place as computers begin to take control of business models. Using digital power not just for production and supply chain, but for overall company management; from business strategy to customer interaction, product design to market development. Business areas that were once led by human thinking will increasingly be governed by computers.

    As Jenner made clear in a recent interview with the strategic management and investment journal Financier Worldwide, “Digitalization is taking place in two-thirds of process re-engineering activities these days. But a digital transformation will take place across the entire company, and that is something different – bringing in new or adapted business models for modified or completely new revenue streams.”

    How does Digitalization Work?

    This is a view supported by chemical industry consultants at McKinsey, who state that there are three main ways in which digitalization will affect the chemical industry. The first, as outlined earlier, is in production, “… using digital-enabled approaches to improve companies’ business processes.”

    The second is the use of digital capabilities to impact, “demand patterns in end markets.” This means the impact that technological advances will have on other industries and how that will influence the chemical industry and its products.

    For example, the use of drones in precision farming will have a major impact on the agrichemical industry. As will the spread of online chemical sales, both wholesale and retail, or the way that self-driving cars will lessen the number of traffic accidents, and so reduce demand for car paint.

    Even more directly for the chemical industry is the way computers are changing the plastics industry. As the McKinsey report notes, “One further digital-enabled area … is 3-D printing, also referred to as additive manufacturing. The market for polymers and chemicals used in additive manufacturing is growing at 30 percent a year and is set to rise from $0.7 billion in 2015 to $2.5 billion in 2020.” Furthermore, “It is possible the market will evolve toward tailored polymers and chemicals for different additive manufacturing systems, which could open up innovation and commercial opportunities for companies making photopolymers, high-performance thermoplastics, and other chemicals used in these processes.”

    But crucially, the third way that digitalzation will impact the chemical industry is in overall chemical business management. Something that McKinsey notes, will be a near-future industry, “… where digital developments lead to changes in business models through which chemical companies capture and create value for customers.”

    Far from being a sudden shock, the implementation of digital in the business models and strategic planning of chemical firms will be a natural progression, and one that has already begun.

    As Jenner observes, “In the last four years, chemical companies started to develop their digital strategies by looking across their value chains and functions and coming up with a lot of smart ideas, including interesting pilot projects. This was a gradual path. However, the problems became evident when they started to integrate all of these pilots into their current IT landscapes and process infrastructure.”

    This is where the third level of digitalization steps in. Or as Jenner puts it, “Overcoming these traps requires new thinking in next-generation business and IT infrastructure.”

    In fact, Jenner believes that the chemical industry is long overdue major restructuring.

    Why do We Need Digitialization?

    The classic top-down management of yesteryear is struggling to keep pace with the rapid changes in modern business. Additionally, the amount of data available for processing, and the growing size of companies seeking economies of scale, means that management of chemical businesses will require more and more digital support.

    As Jenner states, “Overall, business process architecture and digitally enabled backbone infrastructure are lacking right now. This slows down the innovation process. We need to provide the foundation first to get all these transition projects connected, interlinked, administrated, and managed. Only then we can explore real-time vertical and horizontal integration over entire value chains – internally, across all operating divisions and subdivisions, and externally, to suppliers and, more critically, into the customer back-ends.”

    But chemical industry professionals should not be down-hearted by the size of the task ahead. With growing markets, and growing demands being made for safety, security, and ecological considerations, digitalization can provide a safer, more secure, and environmentally sound chemical industry.

    This is a point highlighted by Jenner, when he said that, “Digitalisation creates opportunities to increase transparency across the chemical supply chain. Blockchain and the Internet of Things will enhance how materials are identified and the audit trail of how they are used, such as in certificates of origin and green credits of final products made from environmentally friendly raw material in upstream processes.”

    How will Digitalization Happen?

    Ultimately, shifting business model design away from the boardroom towards a computer influenced strategy will need to come from the company chiefs. The changes in structure to how the company works will be enormous, and so the impetus must come from those at the top.

    While the scale of this task may be daunting, the rewards are clear. Companies who embrace digitalization, such as Amazon (sales) and Facebook (social interaction) will find success. Those who fail to adapt, such as Kodak (non-digital photos), face extinction.


    Photo credit: Freeimages

    Continue Reading